35 research outputs found

    Analisi sperimentali di modelli neurali per la classificazione in immagini di risonanza magnetica del seno.

    Get PDF
    Lo scopo di questo studio è sperimentare diverse reti neurali come strumento di supporto ai medici nella diagnosi del cancro al seno. I dati utilizzati sono parametri dinamici estratti da immagini di risonanza magnetica del seno combinati in diversi modi per ottenere la migliore classificazione delle lesioni

    The Italian Summer Students Program at Fermi National Accelerator Laboratory and other US Laboratories

    Full text link
    Since 1984 INFN scientists performing experiments at Fermilab have been running a two month summer training program for Italian students at the lab. In 1984 the program involved only a few physics students from the Pisa group, but it was later extended to other groups and to engineering students. Since 2004 the program has been supported in part by DOE in the frame of an exchange agreement with INFN. The Fermilab training programs spanned from data analysis to design and construction of particle detectors and accelerator components, research on superconductive elements, theory of accelerators, and analysis of astrophysical data. At the other US laboratories the offered training was on Space Science.Comment: Proceedings of the XXXIX International Conference on High Energy Physics, July 4-11, 2018, Seoul (Korea

    Altered gut microbiota and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain

    Get PDF
    Abstract Recent evidence points to the gut microbiota as a regulator of brain and behavior, although it remains to be determined if gut bacteria play a role in chronic pain. The endocannabinoid system is implicated in inflammation and chronic pain processing at both the gut and central nervous system (CNS) levels. In the present study, we used low Vitamin D dietary intake in mice and evaluated possible changes in gut microbiota, pain processing and endocannabinoid system signaling. Vitamin D deficiency induced a lower microbial diversity characterized by an increase in Firmicutes and a decrease in Verrucomicrobia and Bacteroidetes. Concurrently, vitamin D deficient mice showed tactile allodynia associated with neuronal hyperexcitability and alterations of endocannabinoid system members (endogenous mediators and their receptors) at the spinal cord level. Changes in endocannabinoid (anandamide and 2-arachidonoylglycerol) levels were also observed in the duodenum and colon. Remarkably, the anti-inflammatory anandamide congener, palmitoylethanolamide, counteracted both the pain behaviour and spinal biochemical changes in vitamin D deficient mice, whilst increasing the levels of Akkermansia, Eubacterium and Enterobacteriaceae, as compared with vehicle-treated mice. Finally, induction of spared nerve injury in normal or vitamin D deficient mice was not accompanied by changes in gut microbiota composition. Our data suggest the existence of a link between Vitamin D deficiency – with related changes in gut bacterial composition – and altered nociception, possibly via molecular mechanisms involving the endocannabinoid and related mediator signaling systems

    2-Pentadecyl-2-oxazoline ameliorates memory impairment and depression-like behaviour in neuropathic mice: possible role of adrenergic alpha2- and H3 histamine autoreceptors

    Get PDF
    Neuropathic pain (NP) remains an untreatable disease due to the complex pathophysiology that involves the whole pain neuraxis including the forebrain. Sensory dysfunctions such as allodynia and hyperalgesia are only part of the symptoms associated with neuropathic pain that extend to memory and affectivity deficits. The development of multi-target molecules might be a promising therapeutic strategy against the symptoms associated with NP. 2-pentadecyl-2-oxazoline (PEA-OXA) is a plant-derived agent, which has shown effectiveness against chronic pain and associated neuropsychiatric disorders. The molecular mechanisms by which PEA-OXA exerts its effects are, however, only partially known. In the current study, we show that PEA-OXA, besides being an alpha2 adrenergic receptor antagonist, also acts as a modulator at histamine H3 receptors, and report data on its effects on sensory, affective and cognitive symptoms associated with the spared nerve injury (SNI) model of neuropathic pain in mice. Treatment for 14 days with PEA-OXA after the onset of the symptoms associated with neuropathic pain resulted in the following effects: (i) allodynia was decreased; (ii) affective/cognitive impairment associated with SNI (depression, spatial, and working memories) was counteracted; (iii) long-term potentiation in vivo in the lateral entorhinal cortex-dentate gyrus (perforant pathway, LPP) was ameliorated, (iv) hippocampal glutamate, GABA, histamine, norepinephrine and dopamine level alterations after peripheral nerve injury were reversed, (v) expression level of the TH positive neurons in the Locus Coeruleus were normalized. Thus, a 16-day treatment with PEA-OXA alleviates the sensory, emotional, cognitive, electrophysiological and neurochemical alterations associated with SNI-induced neuropathic pain

    Oral Cannabidiol Prevents Allodynia and Neurological Dysfunctions in a Mouse Model of Mild Traumatic Brain Injury

    Get PDF
    Neurological dysfunctions are the most impactful and persistent consequences of traumatic brain injury (TBI). Indeed, previous reports suggest that an association between TBI and chronic pain syndromes, as well anxio-depressive behaviors, tends to be more common in patients with mild forms of TBI. At present, no effective treatment options are available for these symptoms. In the present study, we used a weight drop mild TBI mouse model to investigate the effect of a commercially available 10% Cannabidiol (CBD) oil on both the sensorial and neuropsychiatric dysfunctions associated with mild TBI through behavioral and biomolecular approaches. TBI mice developed chronic pain associated with anxious and aggressive behavior, followed by a late depressive-like behavior and impaired social interaction. Such behaviors were related with specific changes in neurotransmitters release at cortical levels. CBD oral treatment restored the behavioral alterations and partially normalized the cortical biochemical changes. In conclusion, our data show some of the brain modifications probably responsible for the behavioral phenotype associated with TBI and suggest the CBD as a pharmacological tool to improve neurological dysfunctions caused by the trauma

    Monitoring Carbon Ion Beams Transverse Position Detecting Charged Secondary Fragments: Results From Patient Treatment Performed at CNAO

    Get PDF
    Particle therapy in which deep seated tumours are treated using 12C ions (Carbon Ions RadioTherapy or CIRT) exploits the high conformity in the dose release, the high relative biological effectiveness and low oxygen enhancement ratio of such projectiles. The advantages of CIRT are driving a rapid increase in the number of centres that are trying to implement such technique. To fully profit from the ballistic precision achievable in delivering the dose to the target volume an online range verification system would be needed, but currently missing. The 12C ions beams range could only be monitored by looking at the secondary radiation emitted by the primary beam interaction with the patient tissues and no technical solution capable of the needed precision has been adopted in the clinical centres yet. The detection of charged secondary fragments, mainly protons, emitted by the patient is a promising approach, and is currently being explored in clinical trials at CNAO. Charged particles are easy to detect and can be back-tracked to the emission point with high efficiency in an almost background-free environment. These fragments are the product of projectiles fragmentation, and are hence mainly produced along the beam path inside the patient. This experimental signature can be used to monitor the beam position in the plane orthogonal to its flight direction, providing an online feedback to the beam transverse position monitor chambers used in the clinical centres. This information could be used to cross-check, validate and calibrate, whenever needed, the information provided by the ion chambers already implemented in most clinical centres as beam control detectors. In this paper we study the feasibility of such strategy in the clinical routine, analysing the data collected during the clinical trial performed at the CNAO facility on patients treated using 12C ions and monitored using the Dose Profiler (DP) detector developed within the INSIDE project. On the basis of the data collected monitoring three patients, the technique potential and limitations will be discussed

    Massively Parallelizable Reconstruction for High Energy Physics and Medical Imaging

    No full text
    My PhD research activity was funded by the Istituto Nazionale di Fisica Nucleare (INFN) and by the Physics Department of the University of Pisa. The goal of the research activity is to face the problem of the reconstruction by exploiting two different kinds of parallelism in two different research fields: high energy physics (HEP) and medical physics. Reconstruction can be a very challenging computational task in both fields. As regards HEP experiments, I worked to the optimization of the Fast Tracker (FTK) processor for the ATLAS experiment at the Large Hadron Collider (LHC) located at the CERN laboratory in Geneva. ATLAS is one of the two general purpose detectors designed to measure the product of the proton-proton collisions at the LHC. The key role in the novel technology is played by the Associative Memory (AM) that is a massively parallel system used to provide very fast online event selection of the images of the particles emerging from the collisions of protons. As regards medical physics, I developed a parallel implementation of an iterative algorithm for image reconstruction in 3D Positron Emission Tomography (PET) using Graphics Processing Units (GPUs). The implementation of the iterative algorithms can be a very challenging task due to the massive amount of computation required to incorporate accurate system modeling. For this reason, GPUs are currently used to attain reconstructed images in a practical time because they high performance supporting massive parallel computing power
    corecore